If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2+37n+10=0
a = 7; b = 37; c = +10;
Δ = b2-4ac
Δ = 372-4·7·10
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(37)-33}{2*7}=\frac{-70}{14} =-5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(37)+33}{2*7}=\frac{-4}{14} =-2/7 $
| -8x-8x=128 | | 2(m-8)=-8+3 | | -x^2+x+17=0 | | -35x-2=-1-4x | | 6=-r+2r | | 1/4x-2-3=4 | | b/7+1/9=16 | | 12-(7-3t)=-8t-30 | | 1/3(3x+5)=5/6(3x-7) | | 104=-4(6+4v) | | e×18=9×5 | | 62d+20=20d+400 | | (3x+1)=(7x+4) | | 215=15(x-60)+65 | | 3x=375 | | W+l=5-3l | | 3z-3=z+3 | | 1p=12/15 | | -18+2n=5(6+2n) | | -6+13+7x=3+x+10 | | 3/5(y/8+1/4=9/16 | | 11x-X+33=12x+x | | 13r-20=5 | | 62d+20=400d+20 | | 7(4+m)=31+4m | | 2.5x=4,6 | | -2p+6p=-4 | | (2/5)b+6=10 | | -9(v+2)=2v+48 | | -16=-3n-5n | | -7(4+m)=31+4m | | 3y=4y+8 |